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HYDRODYNAMIC DAMPING OF THE VERTICAL
MOTION OF A HORIZONTAL CYLINDER BENEATH
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Large-scale laboratory measurements are presented of the hydrodynamic damping of the
vertical oscillations of a circular cylinder beneath waves, where the wave crests are parallel to
the cylinder axis. In two series of tests, the Stokes parameter b was 647 000 and 997 000, and the
Keulegan Carpenter number of the cylinder motion was in the range 0)01}0)1. Observations of
the decaying motion of the cylinder, and of steady-state oscillations generated by continuous
force excitation, were in reasonable agreement with the vector form of the relative velocity
Morison equation with constant coe$cients. In some conditions, the motion of the cylinder
became phase locked to the wave-induced #ow, at an integer frequency ratio.
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1. INTRODUCTION

THIS PAPER is concerned with the hydrodynamic damping of a horizontal circular cylinder
oscillating vertically with small amplitudes beneath waves, whose crests are parallel to the
cylinder axis. The relative ambient velocity is the combination of the e!ect of the rectilinear
motion of the cylinder, and the orbital #ow due to the waves at a lowest frequency. Since the
scale of the waves is much larger than that of the body, the #ow is kinematically similar to
the case of a cylinder undergoing a complex two-dimensional motion in a #uid initially at
rest. Early experiments of this type were carried out by Maull & Milliner (1979) on
a cylinder forced to oscillate with a motion having three harmonic components. They
observed a proliferation of higher harmonics in the drag, and components at frequencies
half-way between the harmonics, and at other unrelated frequencies, in the lift. In another
series of experiments at about the same time, Maull & Norman (1979) addressed another
complicated aspect of the same problem, that of loading on a stationary cylinder beneath
waves with its axis parallel to the wave crests. A practical application of this
work*unforeseen 20 years ago*is the problem of predicting the hydrodynamic damping
on a pontoon of a tension leg platform (TLP) which is undergoing high-frequency ringing
and springing oscillations in waves. This is the focus of the present paper.

Key numbers in this problem include the Stokes parameter b"d2f/l (where d is the
diameter of the cylinder, f the frequency of oscillation, and l the kinematic viscosity of
water), a reduced velocity ;

r
";/fd (where ; is the velocity of the ambient #ow), and

a frequency ratio f/f
w

(where f
w

is the wave frequency). The amplitude a of the oscillation of
the cylinder can be expressed in terms of the Keulegan Carpenter number K"2na/d.
Representative values for the case of a TLP are b"3]107, ;

r
"0)3, f/f

w
"5, and the

springing and ringing oscillations result in Keulegan Carpenter numbers of the order of 0)01.
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A theoretical starting point is provided by Stokes' (1851) theory, later extended by Wang
(1968), for the case of a cylinder undergoing harmonic oscillation in a direction normal to its
axis with a small amplitude in a #uid otherwise at rest. This theory is based on the
assumption of two-dimensional laminar #ow, and by using the approximation
cos hDcos hD+(8 D3n)cos h, the result can be expressed in terms of a drag coe$cient as

C
d
"

3n3

2K C(nb)~1@2#(nb)~1!
1

4
(nb)~3@2#2D, (1)

where the instantaneous force acting on the cylinder per unit length is C
d
[ 1
2
o< D< Dd], and

< is its velocity. At large b, equation (1) is closely approximated by

C
d
"

26)24

JbK
. (2)

Little is known about the e!ect of an ambient #ow on these results. An analytical solution
by Yan (2000) for the case of a steady current predicts only very small changes in the forces.

Achieving the conditions mentioned above in the laboratory presents severe practical
problems, and values of b of around 106 have only very recently been obtained. A review of
the published experimental determinations of C

d
in this context is given in Chaplin (2000)

for cases in which the amplitude of the motion is less than that which corresponds to the
onset of instability*theoretically (Hall 1984) at a critical Keulegan Carpenter number
given by

K
#3
"

5)78

b1@4 A1#
0)21

b1@4
#2B. (3)

New measurements presented in the same paper for b"650 000 and 1 250 000 were
consistent with a level of damping in still water almost exactly twice that predicted by the
Stokes/Wang theory (in agreement with earlier results at lower b). The reason for this is not
known. In the presence of a slowly varying horizontal current produced by placing the
cylinder at the node of very long standing waves, the damping of vertical oscillations was
found to increase with the incident reduced velocity at a rate that seemed to depend on the
Reynolds number ;

r
b.

In the present paper, we report on an extension of the same series of experiments, in
which measurements were made of the hydrodynamic damping experienced by the horizon-
tal cylinder constrained to move vertically, in the presence of regular progressive waves, as
shown in Figure 1. Attention is focused initially on the way in which the drag coe$cient
introduced above is in#uenced by the ambient #ow. This approach is referred to as one of
&&independent #ow "elds'', in which the loading is notionally separated into two components
with distinct drag coe$cients associated with the high-frequency motion of the cylinder <,
and the low-frequency ambient #ow;. An alternative procedure (not necessarily any more
satisfactory in physical terms) is to use relative velocities in the vector form of Morison's
equation, by which the instantaneous vertical force per unit length on the cylinder is

F
z
(t)"C
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1

2
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4
<0 , (4)

where;
x
and;

z
are the horizontal and vertical components of the ambient #ow, respective-

ly. At very small amplitudes of motion, the single drag coe$cient C
dr

may be expected to
approach that which is appropriate for a stationary cylinder in the same ambient #ow. For
the case of cylinder oscillations of much larger amplitudes, the relative merits of the
independent #ow "elds and Morison's approaches are discussed by Demirbilek et al. (1987).



Figure 1. A sketch of the support system on which the cylinder was mounted at each end, allowing it to move
only in the vertical direction. The lower beams (6 m long) and the connecting rods were mounted inside ducts to
minimise unwanted hydrodynamic damping. The beams are shown with an exaggerated downwards displacement

from their equilibrium position.
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2. THE EXPERIMENTS

The experiments were carried out in the Delta Flume at Delft Hydraulics, and the full
details of the apparatus are described by Chaplin (2000). The #ume is 230 m long, 5 m wide
and 7 m deep, and was operated with a still water depth of 5)5 m. The waves were generated
by a servo-controlled piston-type wavemarker with automatic second-order corrections to
eliminate parasitic waves. At the opposite end of the #ume, there was a solid concrete beach
with a compound slope of maximum gradient 1:6, and wave re#ections were in some
conditions rather large. However, in processing the results, measurements of damping were
related to measurements of the ambient velocity "eld in the vertical plane close to the
cylinder, rather than to the water surface elevation record.

Figure 1 is a sketch of the main elements of the experimental rig, which was constructed
beneath the #ume carriage. In the experiments described in this paper, the carriage was
stationary, and raised on steel blocks to provide a very sti! foundation for the whole
apparatus. The test cylinder, suspended elastically at each end at the mid-points of enclosed
horizontal 6 m long steel beams, was 0)75 m in diameter and 4)29 m long, and had a smooth
painted external surface "nish. At its mean position, it was at an elevation of 3)6 m above
the #oor of the #ume, and 1)9 m below the still water surface. Its total mass was 1179 kg, and
(with associated hardware) it was neutrally buoyant. A second pair of beams, parallel to the
"rst, was connected to the top of vertical connecting rods attached to each end of the
cylinder. The natural frequency of the cylinder support system could be altered by using
upper beams of di!erent sti!nesses. Experimental conditions are mentioned in Table 1.

The vertical motion of the cylinder was measured by detecting the curvature of the lower
beams by means of strain gauges. The issues of calibrations, endplates, and tare damping
(including that due to wavemaking), are discussed in Chaplin (2000). A signi"cant di!erence
in the experiments described here was the use of continuous force excitation, generated by
means of a variable speed motor mounted on a cross-beam spanning the #ume between the



TABLE 1
Experimental conditions, with natural frequencies measured in air and water

Case
(1)

Nat. freq.
in air (Hz)

(2)

Sti!ness
(kN/m)

(3)

Submerged nat.
freq., f

n
(Hz)

(4)
b
(5)

26)24/Jb
(6)

Series
(7)

Total tare
damping, f

s
(8)

1 3)210 281 1)312 647 000 0)0326 WSE 0)0019
WSF 0)0019

2 3)442 659 2)020 997 000 0)0263 WSB 0)0079
WSC 0)0019
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mid-points of the two upper beams. The output shaft of the motor was connected by a crank
to a vertical rod, which was free to move vertically in linear bearings. By clamping steel discs
to the rod, its total oscillating mass could be adjusted in steps up to 25 kg. This out-of-
balance system provided a means of applying a vertical harmonic excitation to the cylinder
of known frequency (determined by the "nely controlled speed of the motor) and amplitude
[determined by the amplitude (65 mm) of the motion of the rod relative to the cross-beam,
the oscillating mass, and the frequency]. It was used as before to start free decay tests, but in
this case also to excite the cylinder in steady-state oscillations. The phase of the excitation
was provided by a displacement transducer that measured the motion of the rod relative to
the cross-beam.

Particle velocities were measured by an electro-magnetic velocity meter positioned at the
elevation of the axis of the cylinder, but 6 m further towards the wavemaker and about 1 m
from the tank wall, and two wave gauges measured the instantaneous water surface
elevation, one directly above the cylinder, and the other on the same tank cross-section as
the velocity meter.

From the same programme of large scale tests, Johanning et al. (2001) describe measure-
ments of the damping of oscillations of a vertical surface-piercing cylinder.

3. DISCUSSION OF THE MEASUREMENTS

3.1. MEASUREMENTS OF DAMPING IN FREE DECAY

Measurements were made in regular waves of periods 4 and 8 s. The conditions are shown
in Table 2, which include the ratios (in the range 5)25}16)16) between the cylinder natural
frequency when oscillating at small amplitudes in still water f

n
and the wave frequency f

w
.

The results of tests in which the oscillation of the cylinder decayed freely in the presence of
waves are considered "rst. Each experiment was started by displacing the cylinder man-
ually, or by exciting it with the motor system for a short time at a frequency close to its
natural frequency, and its damping was obtained from the subsequent decaying motion. As
an example, one set of results is shown in Figure 2.

A Keulegan Carpenter number was computed for each cycle of the cylinder oscillation,
and the resulting sequence K (n) was then "tted [as shown in Figure 2(c)] to the formula,

K"R exp(!2nfn)#K
0
, (5)

where R is a constant, f is the damping expressed as a proportion of critical, and K
0

is the
mean Keulegan Carpenter number of steady-state oscillations that occurred after the e!ects
of the external excitation had completely died away. The measured damping factor f is the



TABLE 2
Wave conditions. The amplitudes of the fundamental frequency components of the horizontal and

vertical wave-induced #ow are u
1

and w
1
; K

1
"u

1
/f
w
d

Case
(1)

Series
(2)

Wave
period (s)

(3)

Nominal
wave

heights (m)
(4)

f
n
/f
w

(5)
u
1

(m/s)
(6)

w
1
(m/s)
(7)

K
1

(8)

1
WSE 4)00 0)1}1)0 5)25 0)07}0)53 0)02}0)40 0)24}2)50
WSF 8)00 0)1}1)2 10)50 0)10}0)57 0)02}0)29 0)69}5)25

WSB 4)00 0)1}1)0 8)08 0)07}0)52 0)02}0)41 0)26}2)55
2

WSC 8)00 0)1}1)2 16)16 0)18}0)56 0)04}0)30 0)73}5)31

Figure 2. Time series for (a) the water surface elevation above the cylinder, and (b) the vertical response of the
cylinder following an initial excitation in test WSB008. In (c) the decaying motion of the cylinder is plotted in the
form of the Keulegan Carpenter number of each cycle of oscillation. A line shows the best "t of the form of

equation (5).
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Figure 3. Damping factors C
d
K for oscillations in waves, plotted against the mean of the reduced velocity

;
r
"D;

x
D / fd. Measurements obtained in free decay tests are shown as points joined with a continuous line.

A second continuous line in each case shows the Morison prediction based on equation (4), and a short-dashed line
is the approximation of equation (9). Long-dashed lines show the damping measured in very slowly varying

horizontal currents at similar values of b (Chaplin 2000).
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sum of the hydrodynamic damping f
h

and the known tare damping f
s
, and the former is

related to the drag coe$cient by

C
d
"

3n3mf
h

4MK
(6)

(Sumer & Freds+e 1997, p. 349), where m is the total oscillating mass (in the present case,
about 4000 kg including the added mass) and M is the displaced mass of the cylinder
(1895 kg).

By this means, we obtained from each test a constant drag coe$cient which "tted the
observed decay of the motion over a range of Keulegan Carpenter numbers. This range was
limited at the upper end by the initial amplitude of the cylinder, and further by the fact that
largely owing to transient e!ects, the amplitudes of the "rst few oscillations did not match
equation (5), (as can be seen in Figure 2). At the lower end, the range was limited by the
amplitude of the wave-excited motion of the cylinder, below which the mean hydrodynamic
damping is e!ectively negative. The actual range over which equation (5) could be "tted to
the results was typically in the region of 0)01'K'0)005.

It is convenient as before to present the results in terms of values of C
d
K, since for given

experimental conditions this product is proportional to f
h
, and theoretically, in still water it

approaches a constant value of 26)24Jb*the values of which appear in Table 1. In
Figure 3, the values of C

d
K derived from the measurements are plotted as functions of the

reduced velocity;
r
computed from the mean value of the absolute horizontal component of

the ambient #ow D;
x
D.

Also shown in Figure 3, in each case, is a long-broken line which represents (for the same
value of b) the hydrodynamic damping measured previously in the case of a cylinder
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oscillating transversely at similar Keulegan Carpenter numbers in very slowly varying
current. In waves at a given reduced velocity, the damping is seen to be considerably higher.
This may be due to the unsteadiness of the ambient #ow, as well as to the fact that, owing to
the orbital motion of the waves, it generally has a component in-line with the cylinder
motion, in which conditions for damping can be expected to be higher than for the case of
oscillations in a purely transverse current.

Continuous lines in each plot in Figure 3 represent numerical predictions of the damping
obtained from Morison's equation (4), with C

dr
"1 and C

m
"2. (These values are adopted

in all of the simulations below. The added mass coe$cients that were computed from the
measurements were close to unity in all cases.) The predicted factors C

dp
K were computed

as follows. For a given relative incident #ow, which was the measured velocity record
(;

x
(t), ;

z
(t)) "ltered to remove components at frequencies above 1 Hz, and a cylinder

motion <"Kdf cos 2nft, de"ned by a given Keulegan Carpenter number K and frequency
f, a time series for the vertical force on the cylinder was computed from (4). The amplitude
F(1)
z

of the fundamental frequency component of the simulated force within each time slice of
duration 1/f was expressed as

F (1)
z

"

8

3n
C

dp

1

2
od (Kdf ) (7)

[in which the right-hand side is the amplitude of the fundamental frequency component of
C

dp
(1
2

o< D< Dd)], in order to provide a sequence of values of C
dp

K, from which the mean was
calculated over a large number of waves. This depends on the input Keulegan Carpenter
number K, and becomes negative for small K as a consequence of the wave excitation of the
cylinder. But once the chosen value of K exceeds that corresponding to the steady-state
oscillation of the cylinder K

0
, the computed damping factor is initially almost independent

of K, and the results shown in Figure 3 refer to this range.
A simple approximation for this simulated damping factor can be obtained for the case

when the cylinder frequency is much greater than the wave frequency ( f/f
w
<1), but its

velocity is much smaller than that of the wave-induced #ow (<;J;2
x
#;2

2
). Such a case

would be f/f
w
"10 and K/K

w
"0)01, where K

w
is a wave Keulegan Carpenter number,

K
w
"

J;2
x
#;2

z
[1#;2

z
/(;2

x
#;2

z
)

f
w
d

. (8)

Under these conditions, equation (4) reduces to a form that indicates a mean level of
damping corresponding to

C
dp

K"

3n
8

C
dr

K
w

f
w
f

. (9)

This is shown in each case in Figure 3 as a short-dashed line, and as expected matches the
corresponding numerical simulation quite well.

Bearing in mind that no attempt has been made to optimise the values of the drag and
inertia coe$cients, the predictions match the measurements quite closely, and the agree-
ment is much better than might be expected from previous discussion of the relative velocity
Morison's equation. Moe & Verley (1980) found this approach to be grossly unconservative
in many cases (i.e., it may led to over-predictions of the damping); but in their case and in
that of Demirbilek et al. (1987), Reynolds numbers were considerably lower, and the relative
amplitude of the cylinder motion was considerably greater. Figure 3 shows that in the
present conditions Morison's equation leads in many cases to an under-prediction of the
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measured damping, but its behaviour is quite similar and indicates that values of C
dr

not far
from unity would lead to reasonably accurate predictions of the damping.

3.2. FREQUENCY AND AMPLITUDE OF THE CYLINDER STEADY-STATE RESPONSE

It is interesting to examine the relationship between the cylinder frequency and the wave
frequency in the steady state, as seen at large times in Figure 2, when the cylinder was
oscillating freely in waves after all the e!ects of the external excitation had died away. The
ratios obtained in Table 2 refer to the cylinder natural frequency when oscillating at small
amplitudes is still water, but these were generally changed by the presence of waves. Shifts in
the frequency of the cylinder can be attributed to the change in added mass, which is to be
expected in those conditions, but a notable feature of the measurements was a tendency of
the cylinder to become locked on to a multiple wave frequency. This behaviour is well
known in the case of a cylinder oscillating transversely in a harmonic rectilinear #ow, in
conditions where the peak reduced velocity is between 4 and 20 (and vortex shedding forces
are dominant in the cross-#ow direction), and where the amplitude of the undisturbed #uid
motion is many times greater than the cylinder diameter [see, e.g., Sumer & Freds+e (1997)].
In the present conditions, on the other hand, the reduced velocity was always less than 0)3,
and the Keulegan Carpenter number of the wave #ow K

w
was less than 4 in almost all cases.

To identify when lock-on was occurring, we "rst computed the fundamental frequency
component of the cylinder motion over each cycle of its high-frequency oscillation, and
identi"ed the instant at which this "ltered displacement record reached a maximum
elevation. The corresponding Keulegan Carpenter number was then plotted against the
instantaneous elevation of the water surface above the cylinder, as an indication of the
phase of the ambient #ow. Examples are shown in Figure 4, including sequences of many
waves in each of the four cases. A point is plotted for each oscillation of the cylinder, but at
intervals of the integer n nearest to the frequency ratio in column 5 of Table 2; the empty
symbols are replaced by a solid one.

The close clustering of points in Figure 4(b) indicates that the fundamental component of
the cylinder displacement reached a maximum at almost exactly the same "ve phases in
each passing wave, and that the amplitudes of each oscillation in each wave were highly
repeatable. In the conditions of Figure 4(a), with smaller waves at the same frequency, the
amplitudes of the cylinder motion followed the same changes through each wave, but its
phase was uncoupled to that of the ambient #ow. The phase of the cylinder motion
processed through the wave without apparent interaction. There was also no indication of
lock-on at any other value of n.

At higher frequency ratios, both the lock-on and the repeatability of the amplitudes of the
cylinder motion through each wave became weaker. In much larger waves and at n"8,
Figure 4(c) shows the same behaviour as Figure 4(a), and in Figure 4(d) for n"16 (in more
nonlinear waves), the cylinder was at the same phase of its motion at each wave trough, but
its displacement at other times was poorly correlated with the ambient #ow.

It seems reasonable to associate those observations with vortex shedding, and the
apparent fragility of the lock-on mechanism with the fact that here both the Keulegan
Carpenter number of the ambient #ow, and its reduced velocity, are well outside the ranges
normally associated with this process.

Numerical simulations of undisturbed response of the cylinder in waves were carried out,
but, since the cylinder was represented as a linear dynamic system, they did not reproduce
any lock-on. The simulations used a Newmark integration scheme to compute the cylinder
response in the time domain to the loading given at each instant by equation (4), with the
"ltered measurements of the wave-induced horizontal and vertical velocity components.



Figure 4. The Keulegan Carpenter number of each oscillation of the cylinder is plotted as a function of the water
surface elevation above the cylinder at the instant in the same cycle at which the cylinder reached a maximum
vertical displacement. Each nth point is "lled, where n is the integer nearest to the ratio of the cylinder natural
frequency f

n
to the wave frequency f

w
(Table 2, column 5). (a) Case WSE, K

w
"0)27; (b) WSE, K

w
"3)49; (c) WSB,

K
w
"3)50; (d) WSC, K

w
"3)03.
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The simulated and measured time series for each test were then treated in the same way to
provide a Keulegan Carpenter number corresponding to the average amplitude of the
cylinder motion at its dominant frequency in the steady state over many waves. The results
are compared in Figure 5, and again con"rm that in the present conditions, the relative
velocity Morison's equation provides reasonable predictions with C

dr
"1, though there is

a tendency for it to over-predict the response in larger waves.

3.3. RESPONSE TO STEADY-STATE EXCITATION

In steady-state experiments with continuous external harmonic excitation, the frequency of
the excitation system was set similar to the cylinder natural frequency observed in small
amplitude oscillations in still water, and the amplitude of the force was set in turn to
di!erent values by changing the mass attached to the vertically oscillating rod. By this
means, it was possible to compare hydrodynamic damping under steady-state conditions
with that observed during a decaying motion.

From the usual theory for a single-degree-of-freedom system, a knowledge of forcing (of
amplitude F and frequency u), the system sti!ness k, and the response (of amplitude a at
a phase lag /) is in principle su$cient to provide both the oscillating mass m and the
damping c (i.e., force per unit velocity) of the system. In the present case, both must be
considered unknown. The theoretical results are

m"

k

u2A1!
cos/

a B , c"
F sin /

ua
. (10)

In a lightly damped system, the damping has very little e!ect on the response except very

near resonance, where the frequency ratio q"uJm/k+1. Elsewhere, very small errors in



Figure 5. Mean measured and computed Keulegan Carpenter numbers of the cylinder's undisturbed high
frequency response in waves as a function of the wave Keulegan Carpenter number de"ned in equation (8).
Measurements are shown with a continuous line, and predictions with a broken line: (a) case WSE; (b) WSF;

(c) WSB; (d) WSC.
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the measurements of the phase lag/ produce much larger errors in the derived values of c.
(Uncertainties in all other parameters have proportionately much less impact on the
results.) Using data that represent the conditions of the present tests (m"4000 kg,

k"4]105 N/m), the error in the computed damping factor f"c/2Jmk resulting from an
error of 1 degree in / in numerically found to be about

Df
f
"0)017

Dq!1 D
f

(11)

from equations (10). This was large enough to render the method unusable in the still water
tests described in Chaplin (2000) where f&0)001, and very noisy in the present
high-frequency cases WSB and WSC. But in the presence of waves, and at appreciable
amplitudes of oscillation, the damping in the present experiments was often an order of
magnitude greater, and consistent results for f were obtained in the low-frequency case
WSE, with q at about 0)988.

The results obtained from equation (10) for the damping were indistinguishable from
those computed directly by equating the measured and predicted mean power loss, from
which

c"
: Fvdt

:v2dt
, (12)

where F is the instantaneous excitation force, and < the velocity of the cylinder, and the
integration is taken over a large number of cycles.

Figure 6 compares the damping factor obtained in steady-state oscillations at Keulegan
Carpenter numbers of about 0)06 with those found in the free decay tests at similar



Figure 6. Comparison between results of measurements of steady-state oscillation (d) and decaying oscillations
(s) in series WSE. In (a) the Keulegan Carpenter numbers of the cylinder's high-frequency oscillations generated
with 10 kg on the force exciter are compared with the maximum Keulegan Carpenter number observed in free

decay tests at the same wave amplitude. The corresponding damping factors are shown in (b).
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amplitudes of oscillation. There is a reasonable measure of agreement between the two sets
of results.

4. CONCLUSIONS

Measurements have been made of the hydrodynamic damping of a circular cylinder
oscillating vertically beneath regular progressive waves (whose crests are parallel to the
cylinder axis) at values of the Stokes parameter b of 647 000 and 947 000. The ratio of the
cylinder frequency to the wave frequency was between 5)15 and 16)16, and attention was
focused on very small amplitudes of oscillation with Keulegan Carpenter numbers between
0)01 and 0)1.

In view of the conclusions of previous investigations mentioned above, a notable
outcome of this work is that measurements of damping were found to be in quite good
agreement with the implications of the vector form of the relative velocity Morison
equation. No attempts were made to compute optimal drag and inertia coe$cients, but
comparisons made with constant values C

d
"1, C

m
"2, were for most purposes in ad-

equate agreement with the data obtained either in free decay tests or in steady-state
oscillations. Important di!erences with respect to previous studies (Maull & Milliner 1979;
Moe & Verley 1980; Demirbilek et al. 1987; Chaplin & Subbiah 1998) are that, in our case,
the amplitudes of motion were considerably smaller, and Reynolds numbers were higher by
almost an order of magnitude or, in some cases, much more. There is still a considerable gap
between the Reynolds numbers of the present tests and those of applications o!shore, and in
particular it seems unlikely that we have reached post-critical #ow in conditions where the
Reynolds number of the wave-induced #ow;

r
b is only of order 105. Only measurements at
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still larger scale can answer the question of what scale e!ects remain, and whether this form
of Morison's equation is still appropriate at Reynolds numbers two orders of magnitude
higher.

The response of the cylinder at its natural frequency to wave-induced excitation was also
quite well predicted by Morison's equation. In some cases at wave Keulegan Carpenter
numbers K

w
as low as 3)5 there was clear evidence of lock-on, during which the displace-

ment of the cylinder became locked to the phase of the wave at an integer frequency ratio.
This seems not to have had much in#uence on the amplitude of its motion.
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